

Editorial: Cytometry in oncology

OPEN ACCESS

EDITED BY

Andrea Ladányi,
National Institute of Oncology, Hungary

*CORRESPONDENCE

Gábor Barna,
✉ barna.gabor@semmelweis.hu

RECEIVED 10 December 2025

REVISED 08 January 2026

ACCEPTED 15 January 2026

PUBLISHED 29 January 2026

CITATION

Barna G and Dudás J (2026) Editorial: Cytometry in oncology. *Pathol. Oncol. Res.* 32:1612324. doi: 10.3389/pore.2026.1612324

COPYRIGHT

© 2026 Barna and Dudás. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Gábor Barna^{1*} and József Dudás²

¹Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary, ²Department of Otorhinolaryngology and Head and Neck Surgery, Innsbruck Medical University, Innsbruck, Austria

KEYWORDS

CAR T-cell therapy, hematological malignancy, myelodysplastic syndrome (MDS), myeloma cells, T cell lymphoma

Editorial on the Special Issue Cytometry in oncology

Flow cytometry is a very useful tool not only in research but also in routine oncology. One of its most common areas of application is oncohematological diagnostics. Hematological malignancies were previously diagnosed using microscopy based solely on the morphology of cells: their shape, size, and staining. However, it turned out that B and T cells could not be distinguished just by morphology, and the classification of leukemic cells also proved difficult. Flow cytometry allows us to quickly determine the protein pattern of cells, thereby identifying them. In recent years, flow cytometry has advanced significantly. Devices now contain more lasers and can measure more parameters, allowing us to obtain even more information about examined cells. Of course, every method has advantages and disadvantages. Therefore, using different techniques simultaneously can provide the correct result. This is demonstrated by two articles in our special issue. One of these articles, by Plander et al., discussed how cytometry supports morphology in diagnosing MDS, this precancerous stage. In the article by Szalóki et al., the authors present a rare and noteworthy case of cutaneous T-cell lymphoma, where the combination of morphology and flow cytometry was essential to make an accurate diagnosis.

In recent times, the most dynamically developing field of oncology treatments is the improvement of targeted therapies. One of the most successful targeted therapies is the chimeric antigen receptor (CAR) T cell therapy [1]. It uses the patient's own, genetically engineered T cells to destroy cancer cells. However, in certain cases, these T cells do not function well or do not persist for long. Particularly interesting were the findings in the paper of Štach et al. in relation to predicting therapy efficacy of CAR-Ts, that the biological characteristics of the tumors, the level of expansion *in vivo*, but not the immunophenotype of produced CAR-T cells, were important parameters. This paper clearly demonstrated a good balance between research and diagnostics, which mutually support each other in development.

The research and diagnostics have always been each other's driving force. The investigation and understanding of diseases has improved the accuracy and the speed of the diagnostic test, while the identification of diseases and the isolation of cancer cells have created opportunities for new studies. However, it is important to know how the

isolation methods change the immunophenotype of the targeted cells. This kind of research was conducted by Czeti et al., in which they used flow cytometry to monitor the immunophenotype of plasma cells isolated by magnetic beads.

It is hoped that the present special issue will encourage a greater number of people to use this diverse and colorful method by demonstrating the diverse oncological uses of cytometry.

Author contributions

The Editorial was written by GB and JD. GB drafted and JD finalized. GB and JD have approved the submitted version. All authors contributed to the article and approved the submitted version.

Reference

1. Mitra A, Barua A, Huang L, Ganguly S, Feng Q, He B. From bench to bedside: the history and progress of CAR T cell therapy. *Front Immunol* (2023) 14:1188049. doi:10.3389/fimmu.2023.1188049

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.