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Ki-67 proliferation indices (PIs) define the grading of GastroEnteroPancreatic 

NeuroEndocrine Neoplasms (GEPNENs) and are crucial for therapeutic 

decisions. The precise Ki-67 assessment relies on manual counting, which is 

time-consuming, hardly accessible during routine pathological signout and 

thus usually replaced by the easier eye-estimation/balling method prone to 

interobserver variability and differences originating from the hot-spot size, 

localisation and tumor heterogeneity. These discrepancies can significantly 

affect the final PI resulting in misgrading of GEPNENs with potential adverse 

patient outcomes. In the era of digital pathology more and more applications 

are available to overcome this problem. In our retrospective study of 

60 surgically resected GEPNEN cases, we tested the equivalence of 

traditional clinical (C) grading, manual counting with a MarkerCounter (MC) 

application and automatic grading with tumor recognition PatternQuant 

application with subsequent NuclearQuant (NQ) PI-assessment within 

3DHistechs digital pathology platform. We found almost perfect agreement 

between the various grading methods (Spearman rank-order correlations: C vs. 

MC: ρ = 0.912, C vs. NQ: ρ = 0.883, MC vs NQ: ρ = 0.953) without clinically 

significant misgradings. Also the numerical values of the PIs derived with the 

various methods showed close correlations (Linear regression: C vs. MC: r = 

0.952, C vs. NQ: r = 0.925, MC vs NQ: r = 0.978). The automated PI-assessment 

involved a mean 5-fold more tumor cells, better approximating the global/total 

Ki-67 PI, which was earlier shown to deliver more robust prognostic power and 

decreased interobserver variability. Furthermore, G3 tumors differed from 

G2 and G1 tumors in their cytomorphological parameterers: high grade 

tumors had significantly larger and more polymorphic, less regular tumor 

cell nuclei, which parameters could be also utilized for grading and/or 

prognostication purposes. Our study applied a simple, quick, easy-to-use, 
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Machine Learning-based method that could be incorporated into routine digital 

pathology signout alleviating pathologists’ workload and increasing precision 

and recall rate.
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Introduction

GastroEnteroPancreatic NeuroEndocrine Neoplasms 
(GEPNENs) are rare and heterogeneous types of malignant 
tumors with variable behaviour [1]. GEPNENs are usually 
sporadic and well-differentiated, but inherited cases also 
exist. As GEPNENs can produce a variety of hormones, their 
symptoms are diverse. These tumors often remain undiscovered 
until late stages or are incidentally detected at earlier stages [2]. 
For survival estimation and prognostication TNM-staging and 
tumor grading are essential [3]. Proliferation is a reliable 
indicator of tumor growth capacity and serves as a valuable 
marker of the malignant potential. In grading GEP-NENs, Ki-67 
proliferation index (PI) and mitotic counting are both accepted 
methods according to WHO guidelines, where the 
recommendation is to use the method indicating a higher 
grade [3, 4]. The WHO 2019 grading system is shown in 
Table 1. Ki-67-based grading proved to be more reliable than 
mitosis-based, most likely due to the high interobserver 
variability in counting the mitotic figures within a 2 mm2 area 
[5]. According to the WHO guidelines, Ki-67 PI should be 
defined on at least 500–2000 tumor cells in the most highly 
proliferating regions (hot-spots) of the tumor. However, the 
exact methodology for counting is not defined.

The wide-spread “eye-balling” method, where a pathologist 
makes an estimate upon visual inspection, can produce 

ambiguous results; while “eye-counting”, when 
pathologists go cell by cell while counting, is a more 
precise but meticulous and time-consuming process. The 
most accurate approach is manual counting, which can be 
performed on printed images or digital slides. Despite its 
precision, manual counting is highly demanding, and rarely 
used in routine clinical practice [3, 6–8]. Furthermore, Ki-67 
PI might also be affected by the size of hot spots and the 
selection of the region of interest (annotations used for 
counting) as the counting methods are not strictly defined 
[9–15]. The robustness of the prognostic power of Ki-67- 
based grading depends on multiple factors and often 
involves a laborious approach [10].

In the era of digital pathology and artificial intelligence the 
new technologies offer a wide range of applications designed to 
ease the pathologist’s workload. Whole slide imaging (WSI) 
enables precise manual counting of Ki-67 positive cells within 
rigorously defined hot spots using screens and digital platforms 
[16–21]. Automated image analysis can support tumor and hot- 
spot recognition and automate Ki-67 PI quantification, with a 
wide variety of analytical methods and software tools available to 
perform these tasks [22–27]. Moreover, artificial intelligence is 
now capable of predicting Ki-67 positive, proliferating cells 
directly from Hematoxilin-Eosin (HE) stained images [28, 29]. 
These new techniques are becoming more widely accessible and 
offer useful applications to take over these strenuous, yet 

TABLE 1 Classification of GastroEnteroPancreatic NeuroEndocrine neoplasms according to WHO [4].

Classification of GastroEnteroPancreatic neuroendocrine 
Neoplasms (GEP-NENs) 

(2019 WHO)

Mitotic index (mitotic 
figures/10HPF)

Ki-67 proliferation 
index (%)

Well differentiated neuroendocrine tumors (WD-NET)

Grade 1 (G1) <2 <3

Grade 2 (G2) 2–20 3–20

Grade 3 (G3) >20 >20

Poorly differentiated neuroendocrine carcinomas (PD-NEC)

Grade 3 (G3) >20 >20

Small cell neuroendocrine carcinoma (SC-NEC)

Large cell neuroendocrine carcinoma (LC-NEC)

Mixed neuroendocrine nonneuroendocrine neoplasias (MiNENs)
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clinically important and therapy-defining countings [1, 12, 
13, 30–37].

In the current study we used a simple machine learning (ML)- 
based image analysis approach, for the automated tumor 
recognition and assessment of Ki-67 PI of GEPNEN slides. We 
compared the reliability of the automated method for tumor 
grading with digital manual counting and clinical counting 
methods. Furthermore, we also tested whether 
cytomorphological measurements could contribute to 
distinguishing between different grades of GEPNENs.

Materials and methods

Ethical approval was received from the Hungarian Scientific 
Council National Ethics Committee for Scientific Research (no. 
216/2020). The archive of the Department of Pathology and 
Experimental Cancer Research of Semmelweis University 
(Budapest, Hungary) was reviewed for GEPNENs diagnosed 
between 2009 and 2019. Biopsy samples were excluded to 
avoid insufficiently low cell numbers, resulting in a total of 
60 surgical GEPNEN cases included in the study. The original 
diagnostical histology slides with HE and immunohistochemistry 
(IHC) stainings (Chromogranin A, Synaptophysin and Ki-67) 
were collected and scanned with Pannoramic 250 Flash II DX 
(3DHistech, Budapest, Hungary). For case handling and image 
analysis, 3DHistech’s digital platform, Slide Viewer was used.

On each slide, a 2 mm2 area within the tumors’ hot-spot 
region was manually annotated and used to conduct further 
analysis. Manual counting was performed using the 

MarkerCounter (MC) application (3DHistech, Budapest, 
Hungary) on the annotated hot-spot regions involving at least 
2000 tumor cells by L. Cs under the supervision of T.M. With the 
MC-application, positive and negative markers were manually 
placed on each tumor cell nucleus (as shown in Figure 1A), and 
the program calculated the Ki-67 PI for each case based on these 
markings. Results from this approach are referred to as MC Ki- 
67/MC-Grading.

For automated Ki-67 quantification, PatternQuant and 
NuclearQuant applications were used on the 3DHistech platform. 
Both applications utilize machine learning-based algorithms and can 
be customized with adjustable parameters. PatterQuant is designed 
to identify and classify tissue elements based on colors and patterns. 
Small ROIs from tumorous and stromal regions were used to train 
the PatternQuant algorithm. These ROIs were iteratively added until 
the desired tumor segmentation fidelity was achieved. Subsequently, 
NuclearQuant application (developed to evaluate the nuclear 
staining on IHC-slides) was applied to automatically calculate PIs 
within the recognized tumor compartments. The algorithm 
recognizes cell nuclei and subsequently determines their IHC 
positivity and staining intensity, based on differences in color. In 
this case, the algorithm was trained on Ki-67-stained slides to 
differentiate between nuclei stained with DiAminoBenzidin 
(DAB) and background nuclei counterstained with Hematoxilin. 
Each nucleus is assigned as negative (blue marking) or weakly 
(yellow), moderately (orange) and strongly (red) positive and precise 
percentages are calculated for each category (Figure 1B). In addition, 
NuclearQuant performed cytomorphological measurements on 
each nucleus, such as cell perimeter, cell diameter, cell area and 
shape factor. The shape factor is a quantitative descriptor of nuclear 

FIGURE 1 
Neuroendocrine tumors analyzed with MarkerCounter (A) and NucelarQuant (B) applications of 3DHistech, Hungary. (A) red markers label the 
Ki-67-positive, proliferating tumor cells to count exact proliferation index. Blue markings are for the resting nuclei. Only tumor cells were marked, not 
the stroma or inflammatory ones. (B) the algorithm finds the tumor cell nuclei automatically and classifies those into positive (weak – yellow, 
medium – orange, strong - red) or negative (blue) classes and defines exact percentage of proliferation rate by counting the positive nuclei of the 
tumor cells.
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roundness and regularity: a value close to 1 indicates a nearly 
perfect circle, while lower values reflect increasing irregularity of the 
nuclear shape. In our study PatternQuant was used firstly to 
identify tumor regions, followed by NuclearQuant for 
quantifying Ki-67 positive nuclei within the tumor regions and 
for performing cytomorphological measurements. After fine- 
tuning both applications, all settings were saved into a Scenario 
and subsequently all cases were analyzed with the same settings as a 
standardized approach. As in routine Ki-67 stainings any positivity 
in the nuclei should be evaluated as positive, the various positivity 
categories (low, moderate, strong) were combined. Results 
provided by this approach are referred to as NQ Ki-67/ 
NQ-Grading.

Clinicopathological data, such as tumor localization, Ki-67 
PI, and histological grade, were extracted from the original 
pathology reports. These data are referred to as Clinical Ki- 
67/Clinical Grading.

All data was stored in Microsoft Excel format for further 
statistical analyses performed with SPSS version 28.0.1.0 (IBM, 
Armonk, NY, United States). Differences between the various 
groups were calculated with Student t-probe. Correlations 
between the various proliferation indices were calculated 
according to Pearson, and non-continous variables, like grades, 
were compared with rank-order correlation methods: Spearman’s 
rho, Kendall-Tau, Cohen’s Kappa. Significance level was set to 
5%, p < 0,05.

Results

Of the 60 surgical cases, 7 were from the appendix, 2 from 
metastatic lymph nodes, 4 from the stomach, 13 from the 
pancreas, 12 from the large bowel, and 22 from small bowel. 
Based on the pathological reports, grades were as follows: 

36 Clinical Grade 1, 9 Clinical Grade 2 and 15 Clinical 
Grade 3 GEPNENs. Table 2 shows the characteristics of 
the 60 cases.

Average Ki-67 PIs and thus grades were calculated and 
grouped by organ with all methods: Clinical-Grading (as in 
the pathological report), MC-Grading (digital manual 
counting with MarkerCounter) and NQ-Grading 
(automated tumor-recognition with PatternQuant and 
subsequent NuclearQuant assessment). The Ki-67 PI 
results of the different methods are shown in Figure 2; 
Table 2, and compared in Table 3. Student’s t-probe 
showed significant difference between Clinical and NQ 
counting of Ki-67 PIs (1.21 vs. 0.51; p = 0.016), however, 
this difference was only numerical, around 1. All other 
proliferation indices were similar in average and the 
McNemar test did not show any significant differences 
between the various grading methods (Table 3).

We performed pairwise comparisons of the tumor grades 
provided by each method, as shown in the contingency 
Table 4. In case of appendix, lymph node metastasis, and 
large bowel tumors all grading methods delivered the same 
grade, achieving 100% agreement. Stomach and small bowel 
tumors also showed high concordance of the grading 
methods, 75%–100% and 91%–100% respectively. Out of 
4 stomach cases that were investigated only a single case 
was misgraded by the automatic grading. Pancreatic tumors 
showed the lowest grading agreement (54%–85%) with 4, 6 or 
2 out of the 13 cases misgraded, depending on the method. 
Overall, the 60 cases analyzed demonstrated a high level of 
grading concordance, 87%–95%, with 7, 8, and 3 cases 
misgraded out of the 60 cases. The highest match was 
found between MC and NQ-grading methods.

We compared the various grading methods using parametric 
(Cohen-kappa and Pearson) and, as grades are rather categorical 

TABLE 2 Ki-67 values and Grades ot the tumors from various origins with the different grading methods; SD: Standard deviation, G1,2,3: Grade 1, 2, 3.

GEPNEN 
localisation

Clinical Ki-67/Grading MC Ki-67/Grading NQ Ki-67/Grading

Average 
clinical Ki- 
67 PI (%)

SD G1 G2 G3 Average 
MC 

Ki-67 
PI (%)

SD G1 G2 G3 Average 
NQ Ki-67 

PI (%)

SD G1 G2 G3

Appendix (n = 7) 1.21 0.39 7 0 0 0.59 0.70 7 0 0 0.51 0.52 7 0 0

Lymphnode 
metastasis (n = 2)

4.50 0.71 0 2 0 4.53 0.60 0 2 0 5.64 1.18 0 2 0

Stomach (n = 4) 34.00 30.28 1 1 2 25.22 35.82 1 2 1 27.18 35.33 1 1 2

Pancreas (n = 13) 19.05 29.12 7 3 3 10.52 25.71 8 4 1 9.52 21.39 10 2 1

Large bowel 
(n = 12)

41.78 28.77 2 0 10 53.89 27.55 2 0 10 61.05 32.77 2 0 10

Small bowel 
(n = 22)

1.91 1.14 19 3 0 1.55 2.19 20 2 0 1.14 2.00 20 2 0
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than continuous variables, non-parametric, rank order 
correlations were also calculated (Kendall and Spearman 
coefficients) as shown in Table 5. Spearman’s correlation, the 
most widely used method yielded values of ρ = 0.912 between 
clinical and MC: ρ = 0.883 between clinical and NQ and ρ = 
0.953 between MC and NQ-Grades. Other non-parametric 
correlation values ranged also from 0.848 to 0.963, well above 
0.8, indicating almost perfect agreement, according to 
Landis et al. [38]. Cohen’s Kappa also showed substantial 
agreement between clinical and machine-derived methods (C 
vs. MC Κ = 0.786 and C vs. NQ Κ = 0.748), and almost perfect 
agreement between the two machine based methods (MC vs. NQ 
Κ = 0.978).

The numerical Ki-67 PIs were compared using linear 
regression, revealing very strong correlations Clinical vs. MC 
r = 0.952; Clinical vs. NQ r = 0.925; MC vs. NQ r = 0.978, further 
supporting an almost perfect agreement between the different 
methods (Table 5; Figure 3). Neither McNemar’s test showed any 
significant differences between either of the grading methods, as 
shown in Table 3.

51 (85%) of the sixty cases showed complete match of 
gradings and only 9 (15%) cases revealed some discrepancy 
between the grading methods. These cases are shown on 
Table 6. Cases 17, 24, 50 were very close to the threshold 
between G1 and G2 tumors (Ki-67 PI 3%), where eye- 

balling might not be as precise as digital methods. Cases 
16 and 22 were estimated to G2 tumors with Clinical Grading, 
though, digital measurement delivered lower proliferation 
rate putting the cases into G1 category with MC- and NQ- 
Grading. Case 10 was downgraded to G2 only with MC- 
grading, while Clinical and NQ-Grade remained G3. Cases 
21 and 25 were clinically graded as G3, but both other 
methods put it into G2. Similarly Case 22 was downgraded 
from G2 to G1 by the digital methods. Case 46 is the most 
interesting, where clinical grade was G1, but both digital 
methods put the case into G2 group.

Independently of the grading methods (clinical, MC or 
NQ), Ki-67 PIs were significantly different between 
grades (Table 7).

The average tumor cell count was 2029 (2000–2123) for MC- 
Grading and 10,629 (3691–22800) for NQ-grading.

Cytomorphological parameters within the tumors were 
compared in relation to clinical, MC and NQ-Grades. Tumor 
cell nuclear area, perimeter and shape factor significantly differed 
between G1 and G3 and also between G2 and G3 tumors with all 
grading methods. Higher grade tumor cells were usually bigger 
and less regular/circular. These differences were not significant in 
all parameters between G1 and G2 tumors. Table 7; Figure 4
shows how these parameters varied across the different 
grading groups.

FIGURE 2 
Average Ki-67 proliferation indices of the tumors from various origin with the different grading methods; MC: Marker Counter manual counting 
on digital slides, NQ: NuclearQuant automated counting, PI: Proliferation Index.
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Discussion

Regarding Ki-67 PI, the appendiceal and small bowel tumors 
were mainly G1 GEPNENs. Pancreas and stomach tumors 
exhibited a wider range of PIs, however it should be noted 
that endoscopic biopsies of stomach GEPNENs were not 
included, thus the Type 1 gastric WDNETs with their typical 
low PIs were not present in our study. Large bowel tumors were 
overwhelmingly high grade tumors. Upper findings are similar to 
literature data [39].

The various Ki-67 PI counting methods delivered similar 
values and no significant differences were found except for 
appendix (Table 3), where NQ Ki-67 PI values were 
significantly lower than Clinical PI values and there was also a 
trend for having lower MC Ki-67 PIs than Clinical PIs. These 
slightly lower PIs were very close to or below 1%, where manual 
estimation is rather difficult and all appendiceal tumors remained 
in G1 category by either method, thus we claim that these 
variabilities around 1% were only numerical and had no 
clinical relevance.

Table 4 shows the contingency table with complete match 
regarding appendiceal (n = 7) and large bowel (n = 12) 
GEPNENs and lymph node metastases (n = 2). Stomach 
GEPNENs (n = 4) showed complete agreement between 
clinical and NQ-Grading, whereas a single case showed lower 

PI with MC than Clinical and NQ-Grading. Here MC-Grade was 
G2, while clinical and NQ-Grades were G3. This discrepancy can 
be explained by the hot-spot size and localisation on which MC- 
grading was performed.

Pancreas tumors (n = 13) presented the most discrepant 
cases, with 69% match between Clinical and MC-Grades, 54% 
match between Clinical and NQ-Grades and 85% match 
between MC and NQ-Grades. Two of the 4 discrepant cases 
put clinical G2 tumors to MC G1. These tumors harboured PIs 
quite close to the 3% limit, which can be easily overlooked by 
traditional visual estimation. The other two discrepant cases 
put the clinical G3 tumors to MC G2 group. Here eyeballing 
estimated 40% PI, which proved to be below 20% by MC and 
also with NQ-Grading. This could be explained by the focal 
and unequal staining of Ki-67 which might have been 
misleading during clinical grading process. The same cases 
showed the same G3 to G2 phenomenon between Clinical and 
NQ-gradings, with the same explanation. As all such cases had 
lower PIs with the digital methods involving more cells, we 
believe these discrepancies are showing the vulnerability of 
estimation/eye-balling. The other 4 G2 to G1 misgradings 
happened with cases having low proliferation rates around 
the threshold of 3%. MC and NQ-Grades showed almost 
perfect agreement (85%), where only 2 cases with PI around 
3% (3.12 vs. 2.93 and 3.25 vs. 2.6) were downgraded from MC- 

TABLE 3 Differences between the Proliferation indices calculated with the various methods.

KI-67 PI % t-probe, Clinical vs. MC t-probe 
Clinical vs. NQ

t-probe, MC vs. NQ

Appendix 0.069 0.016 0.819

LN-metastasis 0.973 0.385 0.391

Stomach 0.741 0.795 0.940

Pancreas 0.460 0.380 0.915

Large bowel 0.345 0.169 0.569

Small bowel 0.505 0.129 0.522

All 0.725 0.565 0.817

McNemar extension Clinical vs. MC Clinical vs. NQ MC vs. NQ

Appendix (n = 7) 1 1 1

Lymph node metastasis (n = 2) 1 1 1

Stomach (n = 4) 0.317 1 0.317

Pancreas (n = 13) 0.135 0.050 0.157

Large bowel (n = 12) 1 1 1

Small bowel (n = 22) 1 1 1

All samples (n = 60) 0.135 0.097 0.223

t-probe comparison of the Ki-67 proliferation indices and McNemar test comparing the various gradings; MC: Marker Counter, NQ: NuclearQuant assisted automated method. Significant 
difference is shown with bold letters, trends with italics.

Pathology & Oncology Research Published by Frontiers 06

Micsik et al. 10.3389/pore.2025.1612248

https://doi.org/10.3389/pore.2025.1612248


Grade 2 to NQ-Grade 1. In contrast to the usual clinical 
counting/estimation, digital counting is capable to define 
PIs with more decimal places, an unseen, unexperienced 
precision level until now. WHO-definition states: G1 means 
up to 3% PI, while G2 is valid from 3% and decimal precision is 
not handled by the guideline. Actually, the above mentioned 
grading discrepancies were caused by not performing 
rounding numbers, with rounding numbers 100% grading 
match was achieved in this setting.

With small bowel GEPNENs (n = 22) only one upgrading 
and one downgrading was found between Clinical and MC or 
NQ-Gradings, while MC and NQ-Grades showed 100% match. 
The downgrading put a Clinical PI 3% case to MC/NQ PI 1%– 
2%, showing again the vulnerability of estimation against digital 
counting around the low threshold. On the other hand, 
upgrading happened with a case of Clinical PI 2.5% to digital 
PI 9%–10%. This might have more clinical relevance and shows 
that hot-spot localisation can have impact on the final grade. As 

TABLE 4 Contingency table comparing the gradings performed upon the various methods of counting proliferation indices. The contingency tables 
show the pairwise comparative results of the various grading methods, with the matching grading percentages; C1-3: Clinical grades upon 
histology, MC1-3: Grades upon Marker Counter results, NQ1-3: Grades upon Nuclear Quant results. There are discrepancies, especially with pancreas 
cases, but altogether there is about 90% grading match across the various grading methods.

Appendix (n = 7) 100% MC1 MC2 MC3 100% NQ1 NQ2 NQ3 100% NQ1 NQ2 NQ3

C1 7 0 0 C1 7 0 0 MC1 7 0 0

C2 0 0 0 C2 0 0 0 MC2 0 0 0

C3 0 0 0 C3 0 0 0 MC3 0 0 0

LN-meta (n = 2) 100% MC1 MC2 MC3 100% NQ1 NQ2 NQ3 100% NQ1 NQ2 NQ3

C1 0 0 0 C1 0 0 0 MC1 0 0 0

C2 0 2 0 C2 0 2 0 MC2 0 2 0

C3 0 0 0 C3 0 0 0 MC3 0 0 0

Stomach (n = 4) 75% MC1 MC2 MC3 100% NQ1 NQ2 NQ3 75% NQ1 NQ2 NQ3

C1 1 0 0 C1 1 0 0 MC1 1 0 0

C2 0 1 0 C2 0 1 0 MC2 0 1 1

C3 0 1 1 C3 0 0 2 MC3 0 0 1

Pancreas (n = 13) 69% MC1 MC2 MC3 54% NQ1 NQ2 NQ3 85% NQ1 NQ2 NQ3

C1 6 0 0 C1 6 0 0 MC1 8 0 0

C2 2 2 0 C2 4 0 0 MC2 2 2 0

C3 0 2 1 C3 0 2 1 MC3 0 0 1

Large bowel (n = 12) 100% MC1 MC2 MC3 100% NQ1 NQ2 NQ3 100% NQ1 NQ2 NQ3

C1 2 0 0 C1 2 0 0 MC1 2 0 0

C2 0 0 0 C2 0 0 0 MC2 0 0 0

C3 0 0 10 C3 0 0 10 MC3 0 0 10

Small bowel (n = 22) 91% MC1 MC2 MC3 91% NQ1 NQ2 NQ3 100% NQ1 NQ2 NQ3

C1 19 1 0 C1 19 1 0 MC1 20 0 0

C2 1 1 0 C2 1 1 0 MC2 0 2 0

C3 0 0 0 C3 0 0 0 MC3 0 0 0

All samples (n = 60) 88% MC1 MC2 MC3 87% NQ1 NQ2 NQ3 95% NQ1 NQ2 NQ3

C1 35 1 0 C1 35 1 0 MC1 38 0 0

C2 3 6 0 C2 5 4 0 MC2 2 7 1

C3 0 3 12 C3 0 2 13 MC3 0 0 12
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digital values were higher and based on more cells, we believe that 
the MC and NQ-Grades must have been more reliable.

Comparing the gradings for all cases (n = 60), the various 
grading methods showed almost perfect matches (88%, 87% and 
95%) as described in the results. MC and NQ-Gradings 
correlated very strongly, while the clinical grades were 
sometimes seemingly farer from the digital achieved ones. The 
reasons for these discrepancies are unfortunately hard to define 
for each individual case, as clinical grading was done previously 
and we cannot know how and on which focus it was performed. 
However, in our opinion, this finding is not unexpected, as 
clinical grading is typically based on the subjective estimation 
of pathologists, which inherently depends on their experience 

and individual interpretative approach. Although guidelines 
provide recommendations to follow, the exact grading process 
cannot be reproduced, as pathologists do not document their 
step-by-step evaluation via video camera or other recording 
tools. Consequently, it is not possible to exactly replicate the 
original clinical results. In contrast, MC and NQ-grading 
provides a more standardized and reproducible approach.

After thorough checking of the discrepant cases we found 
that majority of these were clinically irrelevant and mainly 
affected cases around the 3% threshold. In our opinion, these 
happened due to the previously unexperienced decimal fraction 
precision of the automated PIs, which opens an unmet field in the 
precision of Ki-67-assessment. With number roundings, the 

TABLE 5 Correlations between the different grading methods with rank-order calculations and between the variously calculated Ki-67 proliferation 
indices; MC: Marker Counter. NQ: NuclearQuant assisted automated method.

Grading Correlation Clinical vs. MC Clinical vs. NQ MC vs. NQ

Pearson r 0.922 0.913 0.963

Kendall τ 0.881 0.848 0.940

Spearman ρ 0.912 0.883 0.953

Cohen’s K 0.786 0.748 0.903

Ki-67 PI values correlation 0.952 0.925 0.978

FIGURE 3 
Comparison of the Ki-67 values of each case, counted with the different methods; MC: Marker Counter. NQ: NuclearQuant assisted automated 
method. PI: Proliferation Index.
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majority of these discrepancies could have been prevented, 
showing the problem’s numerical nature without 
clinical relevance.

Upon comparison of the different grading methods, there 
was a very strong correlation between the different methods as 
shown in Table 5 and described in Results.

The strongest correlation of PIs was found between MC 
and NQ methods and more importantly, the direction of any 
differences from the original clinical grading was also similar. 
Furthermore, both MC and NQ-Gradings showed very strong 
correlations with the clinically/pathologically given 
proliferation indices, validating each method as a reliable 
prognosticator. Therefore, we conlcude that all grading 
methods were equivalent, without clinically relevant 
differences (Table 5). Considering this equivalency of all 
methods, the NQ-Grading should be preferable as this 
method is archivable, its values relies on more cells and 
can be revisited/recalculated any time, ensuring 
reproducibility.

The guidelines recommend to perform grading on 
500–2000 cells. Accordingly, our study used not less than 
2000 (2000–2123, average was 2029) cells for MC-grading, but 
this approach required a substantial amount of working hours 
and thus is not easily affordable during routine signout. 2000 cells 
sound much, even though tumors consist of much more cells and 
depending on the material (biopsy or surgical) and tumor- 
pattern (infiltratively or diffusely spreading), a single slide can 
contain tens or hundreds of thousands cells. Earlier it was shown 
that tumor heterogeneity, hot-spot localisation/selection and 
size/shape might have significant influence on Ki-67 PI and 
thus is a possible source for incorrect PI-definition or 
interobserver variability. Moreover, the whole tumor global 
Ki-67 PI delivered more robust prognostic information 
[8–11, 15, 18].

In lights of these informations, during the automated tumor 
recognition and Ki-67 counting (NQ grading) we were not 
limited to the annotations used for the MC-grading and tried 
to cover bigger tumor areas. The average tumor cell count for 
NQ-grading was 10,629 (3691–22800) cells. This meant an 
average 5-fold (with an interval of 2–11 fold) increase to the 
MC-method, covering much bigger tumorous regions and more 
closely approximating the global PI.

The strong correlation between MC and NQ Ki-67 values, 
and thus grades, validated the utilization of the automated 
method, which, on the other hand, was quick and easy to 
perform on a regular computer without special assistance, 
offering a reliable way to help routine signout. Our findings 
show similar results as other studies on this field, like AIforia- 
platform in the work of Vesterinen et al, where they found ICC 
(Intra Class Correlation) of 0.89 between human and digital 
pathology methods. They found that in 12% of the cases the 
machine gave slightly lower, while in 42% slightly higher PIs, 
though their approach used a Convolutional Neural Network 
model on manual annotations [27]. Goodell et al. compared 
Mitotic index, single hotspot PI and 10 consecutive field average 
PI-counting and found that with lower grade tumors/cutoff the 
single hotspot method delivered lower specificity and prognostic 
power for metastasis prediction, and the 10 consecutive field was 
the best. Their study also showed that the number of the involved 
tumor cells into PI-counting has a significant impact on 
interobserver variability and prognostication power [40].

In a recent bigger study, Park et al. [32] compared 
283 GEPNEN cases with eye-balling and NuclearQuant 
methods, and also found substantial agreement (Κ = 0.765). 
They used manual hotspot annotation of about 1,000 cells and 
both of their PI-calculation methods proved to be prognostic 
according to the Kaplan-Meier curves. They also concluded that 
digital image analysis (DIA) is a powerful method and parallelly 

TABLE 6 Cases with discrepant gradings with either methods.

Case GEPNEN localisation Clinical grade MC-grade NQ-grade Clinical Ki-67 MC Ki-67 NQ Ki-67

10 Stomach 3 2 3 32.50 18.59 28.39

16 Pancreas 2 1 1 10.00 2.18 1.73

17 Pancreas 2 2 1 3.00 3.12 2.93

21 Pancreas 3 2 2 40.00 10.40 7.94

22 Pancreas 2 1 1 10.00 1.38 1.98

24 Pancreas 2 2 1 3.00 3.25 2.60

25 Pancreas 3 2 2 40.00 14.18 19.02

46 Small bowel 1 2 2 2.50 9.79 9.19

50 Small bowel 2 1 1 3.00 2.06 1.27

Blue markings show the cases which resulted in lower grade with digital evaluation, whereas yellow marking show the only case which proved to be G2 with digital counting instead of the 
original Clinical G1 category. Red numbers show the cases close to the 3% thresholds, where the cause for discrepant grades was the lack of performing number rounding. MC: Marker 
Counter, NQ: NuclearQuant assisted automated method.
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TABLE 7 Comparison of the different cytomorphological parameters according to the different grading methods.

t-probe Clinical Grading MC-grading NQ-grading

Parameter G1 vs. 
G2

G1 vs. 
G3

G2 vs. 
G3

G1 vs. 
G2

G1 vs. 
G3

G2 vs 
G3

G1 vs. 
G2

G1 vs. 
G3

G2 vs. 
G3

Clinical 
Ki-67 PI (%)

0.009 p < 0.001 p < 0.001 0.049 p < 0.001 p < 0.001 0.113 p < 0.001 p < 0.001

MC 
Ki-67 PI (%)

0.005 p < 0.001 p < 0.001 0.002 p < 0.001 p < 0.001 0.004 p < 0.001 p < 0.001

NQ 
Ki-67 PI (%)

0.011 p < 0.001 p < 0.001 0.014 p < 0.001 p < 0.001 0.015 p < 0.001 p < 0.001

TC nuclear-area, average 0.441 p < 0.001 p < 0.001 0.077 p < 0.001 p < 0.001 0.091 p < 0.001 p < 0.001

TC nuclear-area 
SD

0.076 p < 0.001 p < 0.001 0.003 p < 0.001 p < 0.001 0.001 p < 0.001 p < 0.001

TC nuclear perimeter, average 0.541 p < 0.001 p < 0.001 0.182 p < 0.001 p < 0.001 0.225 p < 0.001 p < 0.001

TC nuclear perimeter 
SD

0.089 p < 0.001 p < 0.001 0.015 p < 0.001 p < 0.001 0.011 p < 0.001 p < 0.001

TC nuclear shape-factor, average 0.926 0.039 0.001 0.840 p < 0.001 p < 0.001 0.820 p < 0.001 p < 0.001

TC nuclear shape-factor, SD 0.459 0.011 p < 0.001 0.936 p < 0.001 p < 0.001 0.578 p < 0.001 p < 0.001

Clinical 
G1

Clinical 
G2

Clinical 
G3

MC 
G1

MC 
G2

MC 
G3

NQ 
G1

NQ 
G2

NQ 
G3

TC nuclear-area, average, μm2 22.72 24.13 35.57 22.61 24.9 38.38 22.61 24.37 37.71

TC nuclear-area, SD, μm2 10.35 12.29 22.32 10.37 13.82 23.83 10.37 13.3 23.42

TC nuclear perimeter, average, μm 17.59 18.05 22.21 17.53 18.25 23.33 17.53 18.09 23.06

TC nuclear perimeter, SD, μm 4.65 5.15 8.04 4.67 5.42 8.55 4.67 5.29 8.4

TC nuclear shape-factor, average 0.89 0.89 0.84 0.89 0.89 0.83 0.89 0.89 0.83

TC nuclear shape-factor, SD 0.09 0.09 0.11 0.09 0.09 0.12 0.09 0.09 0.12

As we see, tumor cells showed significant differences in almost all cellular parameters in G1/G3 and also in G2/G3 relations, while G1 and G2 tumors showed less, still several significant differences. Italic values represent trends, while bold values show the 
significant differences. MC: Marker Counter. NQ: NuclearQuant assisted automated method. PI: Proliferation Index, TC: Tumor cell, SD: Standard deviation.
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with the adoption of digital pathology into our everyday practice 
it is capable of easing our workload. DIA offers even greater 
potential when combined with automated tumor recognition, 
making it possible to perform whole slide imaging with global Ki- 
67 score delivering more accurate and robust prognostic power. 
Earlier studies also showed that increasing the number of 
involved cells in PI-counting increases the robustness of DIA- 
based PI [10, 15, 18].

An early work of Reid et al. [7] concluded that eye-balling is 
rather inaccurate and unreliable, and they recommended replacing 
it with camera-captured/printed methods. However, they also 
acknowledged that this method is very laborious, and at that 
time they regarded automated counting as neither cost-effective 
nor operator independent. Although, almost a decade has passed 
from their work which brought tremendous progress in the field of 
DP and automated cell counting with AI [30]. Our method with 
PatternQuant and subsequent NuclearQuant automated Ki-67 PI- 
calculation offers a very quick and reliable method suitable for 
incorporation into routine application.

According to WHO, the differentiation and size of the 
GEPNEN cells could be also used as information for grading, 
as Grade 3 tumors can be put into Well Differentiated 
Neuroendocrine Tumors (WD-NET) or Poorly differentiated 
Neuroendocrine Carcinomas (PD-NEC) depending on mitotic 
figures, PIs, but also on cell size and cellular features 

discriminating between small and large cell neuroendocrine 
carcinomas. Still, we are not aware of any study investigating 
the cytomorphological parameters in GEPNENs.

We measured the averages and standard deviations of tumor 
cell nuclear area, perimeter and shape factor of all the involved 
60 cases while performing the NQ-counting and found that these 
significantly differed between G1/G3 and G2/G3 classes with either 
grading methods (Clinical, MC or NQ). There were also more 
significant differences between G1 and G2 classes, especially in the 
standard deviation of the values. Table 7; Figure 4 shows that 
G3 tumor cells have significantly larger nuclei and nuclear 
perimeter than G1 and G2 tumor cells, independently from the 
grading method (Clinical, MC and NQ). Furthermore, the 
significantly smaller shape factor of the G3 tumors described a 
more variable shape of the polymorphic high grade tumor cells. 
These findings are in line with the WHO guidelines, though their 
utilization would need more research, as in our cohort, the size and 
shape data were not enough to separate the tumors into different 
grades. Perhaps a more sophisticated or combined analysis, 
involving more parameters of the tumor cells might deliver 
better classification opportunities/perspectives.

There are certain limitations of our study. First is the relative 
low number of the 60 involved cases, but this was the maximum 
accessible surgical material in our archive. We excluded biopsies 
because those might not contain 2000 cells. The second limitation 

FIGURE 4 
Comparizon of the various tumor cell nuclear parameters with the different grading methods. G1 and G2 cases showed significantly different 
parameters from G3 cases. whereas G1 and G2 cases did not differ significantly. Two-headed arrows show the significantly different groups (p < 0.05); 
MC: Marker Counter. NQ: NuclearQuant assisted automated method. PI: Proliferation Index.
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is the lack of follow up data, which could be the final answer for 
demonstrating the prognostic power of the various grading 
methods. It is our future plan to correlate the digitally derived 
PIs with patients’ follow up data and show their robustness on 
Kaplan-Meier curves and with Cox regression analysis. The 
additional data that tumors of various grades differ from each 
other in their size and shape, might be also utilized later, but our 
study cohort did not allow the separate subanalyis of WD-NETs 
and PD-NECs or to classify tumors upon their nuclear size or 
parameters. With follow up data the cytomorphological parameters 
can be also tested towards their prognostic power or relevance.

Conclusion

Our smaller, retrospective, single-centered study showed that 
the automatic tumor-recognition and Ki-67 counting method 
offered by a simple machine learning algorithm, PatternQuant 
and NuclearQuant (3Dhistech, Hungary, Budapest), delivers 
equivalent grading of GEPNENs with the traditional methods. 
Our results validated that automated PI assessment is achievable 
with digital pathology and has the potential to replace the rather 
demanding manual counting methods, thus easing routine 
pathology signout process with increased precision by 
involving more cells to better approximate a more reliable 
global PI and potentially enable the use of additional 
cytomorphological parameters.
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